Insulin-like growth factor-I is a differentiation factor for postmitotic CNS stem cell-derived neuronal precursors: distinct actions from those of brain-derived neurotrophic factor.
نویسندگان
چکیده
Insulin-like growth factor-I (IGF-I) has been reported previously to promote the proliferation, survival, and maturation of sympathetic neuroblasts, the genesis of retinal neurons, and the survival of CNS projection and motor neurons. Here we asked whether IGF-I could promote the in vitro differentiation of postmitotic mammalian CNS neuronal precursors derived from multipotent epidermal growth factor (EGF)-responsive stem cells. In the absence of IGF-I, virtually no neurons were present in cultured stem cell progeny, whereas IGF-I increased neuron number by eight- to 40-fold. Brief exposures (2 hr) to IGF-I were sufficient to allow for neuronal differentiation without affecting proliferation or survival. IGF-I actions could be mimicked by insulin and IGF-II at concentrations that correspond to the pharmacology of the IGF-I receptor, the latter for which the mRNA was detected in undifferentiated stem cell progeny. Although ineffectual alone at low concentrations (10 nM) that would activate its own receptor, insulin was able to potentiate the actions of IGF-I by acting on mitotically active neural precursors. When neuronal precursor differentiation by IGF-I was examined in relation to brain-derived neurotrophic factor (BDNF), two important observations were made: (1) BDNF could potentiate the differentiating actions of IGF-I plus insulin, and (2) BDNF could act on a separate population of precursors that did not require IGF-I plus insulin for differentiation. Taken together, these results suggest that IGF-I and BDNF may act together or sequentially to promote neuronal precursor differentiation.
منابع مشابه
Brain-derived neurotrophic factor, insulin-like growth factor-I and its binding protein responses to a session of endurance exercise in healthy elderly men
Purpose: This study investigated the effect of endurance activity on brain-derived neurotrophic factor(BDNF), insulin-like growth factor 1(IGF-1) and its binding protein 3(IGFBP-3) in elderly healthy individuals. Materials and Methods: Eleven healthy old males (mean age of 68 ± 2.31 years old, height of 177 ± 3.1 cm and weight of 79 ± 1.5 kg) were studied. Seventy two hours after maxi...
متن کاملP144: Therapeutic Application of Mesenchymal Stem Cells in Spinal Cord Injury Treatment
Spinal cord injury (SCI) is a neurologic disorder that have a significant impact on quality of life, life expectancy, and economic burden. SCI leads to irreversible neuronal loss and ultimately leads to paralysis. Mesenchymal stem cells (MSCs) are a promising source for cellular therapy because they have possessed the capacity of self-renewal and differentiation to several distinct mesenchymal ...
متن کاملTrans-differentiation of the Adipose Tissue-Derived Stem Cells into Neuron-Like Cells Expressing Neurotrophins by Selegiline
Background: Adult stem cells (ASC) are undifferentiated cells found throughout the body. These cells are promising tools for cell replacement therapy in neurodegenerative disease. Adipose tissue is the most abundant and accessible source of ASC. This study was conducted to evaluate effect of selegiline on differentiation of adipose-derived stem cells (ADSC) into functional neuron-like cells (NL...
متن کاملHuman Olfactory Ecto-mesenchymal Stem Cells Displaying Schwann-Cell-Like Phenotypes and Promoting Neurite Outgrowth in Vitro
Strategies of Schwann cell (SC) transplantation to regenerate the peripheral nerve injury involves many limitations. Stem cells can be used as alternative cell sources for differentiation into SCs. Given the high potential of neural crest-derived stem cells for the generation of multiple cell lineages, in this research, we considered whether olfactory ecto-mesenchymal stem cells (OE-MSCs) derive...
متن کاملA role for the POU-III transcription factor Brn-4 in the regulation of striatal neuron precursor differentiation.
Both insulin-like growth factor-I (IGF-I) and brain-derived neurotrophic factor (BDNF) induce the differentiation of post-mitotic neuronal precursors, derived from embryonic day 14 (E14) mouse striatal multipotent stem cells. Here we ask whether this differentiation is mediated by a member of the POU-III class of neural transcription factors. Exposure of stem cell progeny to either IGF-I or BDN...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 6 شماره
صفحات -
تاریخ انتشار 1998